
Simplification and Compression of Two
Dimensional Curves

Alexander Powell
Georgia Institute of Technology

dlex@cc.gatech.edu

Brian Whited
Georgia Institute of Technology

fender@cc.gatech.edu

Overview

We present a method for compressing 2D curves
using a lossy compression scheme that involves
quantization of the original data and Huffman
encoding.  The system consists of two distinct
parts—the compressor and the decompressor.  The
compressor quantizes the data and stores it in an
efficient manner.  The decompressor reads back this
compressed data and uses a number of techniques
to attempt to recreate the original curve as
accurately as possible.

Compression

There are multiple distinct steps to creating the final
compressed file.  These are normalization,
quantization, guesses and residues, symbol
generation, building a Huffman tree, and encoding
data.  Each step must be executed sequentially.

Normalization

The first step is to take the input coordinates and
scale them so that they range from 0 to 1.  We did
this in a way that forces the resulting curve to have a
consistent aspect ratio with the original.  For this
reason, our normalization involves only three
parameters: minimum x value, minimum y value, and
a scale factor.

We start by finding the minimum and maximum x
and y values of all of the coordinates.  The scale
factor is defined as max(Δx, Δ y).  For each
coordinate, we subtract the minimum x and y values
from the position and then scale by dividing the
values by the scale factor.

Figure 1: Quantization of the original curve (red)
results in a discretized curve (blue).  In our lossy

compression algorithm, the quantization step
involves the most drastic loss of data.

Quantization

Quantization is the process of discretizing the curve
by converting the original floating point coordinates
into integer coordinates that fall on a regular grid.

We originally considered quantization by truncating
the values and offsetting the final grid by 1/2 the grid
spacing.  The result was a properly quantized
representation of the curve, but our sample space
was reduced by one grid space in each dimension,
which was unacceptable.  Our solution to this was to
quantize our curve onto a regular grid of size 2^b-1
rather than 2^b.  This allowed us to round the
values, rather than truncate them, and resulted in no
shrinking of the sample space when converting back
and forth from quantized numbers to real numbers.



Guesses and Residues

A guess for a point involves using previous points on
the curve to predict where the next point will occur.
We use this guess instead of the actual location of
the next point so that we reduce the amount of
storage necessary to represent that point.  We
calculate the guess by calculating the “difference of
the differences” of the previous three points.  This is
shown in pseudocode form in Listing 1.  From this
guess, we then store only how far off the actual point
is (Δx, Δy) because we assume that these delta
values (also known as residues) will be small and
will occur frequently in our data.

Listing 1: Prediction mechanism

Finding Symbols

Once we have all of the residues stored, we define
unique symbols to represent the values of the
residues (both the x and y values separately).  We
count the number of symbols necessary to
regenerate the curve and calculate the frequency of
each (Listing 2).

Building a Huffman Tree

The Huffman tree determines a minimal binary code
that is associated with each symbol.  We start by
building an array of Huffman nodes, or binary search
tree nodes that store in a single node both the
symbols themselves and the frequency of
occurrence.  Once we have the tree, we can
determine the unique code for each symbol by
recording the path taken to get to the leaf node that

is the symbol. By convention, going from parent to
left progeny is represented by a 0 and going from
parent to right progeny is represented by a 1.  For
example, if you have to go left then right to get to a
symbol from the root, the code for that symbol is
“01”.

Data Encoding

We now have all of the information we need to
encode the file with the exception of a binary
representation of the Huffman tree itself (called the
codebook).  We used a pre-order traversal of the
tree, and at each node we add a 0 if it is an internal
node and a 1 for a leaf.  This results in a very
efficient representation of the tree.

Listing 2: Finding symbols

Our file’s header consists of 17 bytes.  Stored in the
header is the minimum x and y value and scale
necessary to unnormalize the data (4 bytes each, 12
bytes total), the number of vertices in the curve (4
bytes), and the quantization value b (1 byte).  There
are more compact ways to store the header, such as
removing the number of vertices and inferring that
from the data, but this method was simple to
implement and is close to optimal.

Next, we write the Huffman tree as a string of 0’s
and 1’s.  If the number of bits is not a multiple of 8,

D[0] = P[0]; // Send first point
D[1] = P[1] - P[0];
D[2] = P[2] - P[1];
For the rest of points in P {
    d1 = P[i-2] – P[i-3];
    d2 = P[i-1] – P[i-2];

    // Calculate difference
    // of differences
    dd = d2 – d1;

    // Our guess point
    guess = P[i-1] + dd;

    // How much we’re off by
    D[i] = P[i] – guess;
}

Array s;  // our symbols
For all Points i in P {
    If not s.contains(P[i].x)
        s.add(P[i].x);
    If not s.contains(P[i].y)
        s.add(P[i].y);
}

// Put them in order,
// smallest first
sort(s);

// Calculate frequency of each
Array freq;
For all values i in s {
    For all vectors j in D {
        If (D[j].x == s[i])
            freq[i]++;
        If (D[j].y == s[i])

freq[I]++;
    }
}



we pad the end with zeros so that we are byte-
aligned.  The decoding function will stop when the
number of 0’s is more than the number of 1’s at the
end of a byte.

Then the symbols are written in-order (via the in-
order traversal of the tree).  These symbols are 4
bytes each.  Optimizations can be done here, since
most of the time the symbols represent values that
can be contained in 1 byte, but since we cannot
guarantee that without extra effort, we use 4 bytes.
One simple alternative would be to send a value in
the header specifying how many bits would be
necessary per symbol.

Following the symbols, we send the first point.  The
x and y values of the first point are each 4 byte
integers.

Finally, we send the encoded residues.  We must
pad the end of the bit string with zeros if necessary
so that we are byte-aligned.

Decompressor

In addition to reading the quantized curve from the
compressed file, the decompressor considers a
number of methods that take quantized data and
produce a curve that resembles the original curve as
closely as possible.   Among these is a simple curve
smoothing tool, and three curve subdivision
techniques.  The difference between the curves
(error) is measured by Hausdorff distance.

Curve Smoothing

A very simple curve-smoothing tool is provided
because the quantized curve often has jagged
edges that resemble stair steps.   Solving this
problem with subdivision can be tedious and usually
preserves too many jagged edges.  Our alternative
solution is to form a curve from the midpoints of
each of the edges, and then tack on the original and
final points to maintain curve length.  This approach
works well to smooth out a curve and can be applied
more than once.  The only downside to this method
is that, like many other smoothing techniques, it can
result in a shrinking of certain areas when applied
repeatedly.  On smooth curves, we usually apply the
midpoint trick 1 or 2 times before continuing with
other techniques for restoring the curve (Figure 2).

Figure 2: The original curve (top-left) is quantized
into the representation we use for compression (top-
right).  After one level of basic midpoint smoothing

(bottom-left), the main jagged edges are toned
down.  After three levels of smoothing (bottom-right),
the curve is almost restored, despite a compression

ratio of nearly 100:1.

Curve Subdivision

We used a couple of subdivision techniques to aid in
smoothing our final curve.  The first technique (split-
and-tweak) was desirable because our past
experience showed that it smoothed sharp edges
dramatically.  4-point subdivision was also
considered, but since it interpolates vertices, it
maintains too much of the jagged structure of the
quantized curve.  Jarek’s subdivision technique,
which can be viewed as a combination of the
principles between both 4-point and split-and-tweak
subdivision, proved to be the most useful in
combating the sloppiness of the discretized curve.

Hausdorff Distance Calculation

We calculated the Hausdorff distance by an
approximation technique where we sample the
edges of one curve in order to find the nearest
points on the edges of the other.  Though this is not
a very efficient method for finding the Hausdorff
distance, it runs fast enough on our personal
computers with a reasonable number of vertices and
samples per curve.



Results

All of the curves shown below were generated
randomly using only a few parameters (number of
vertices, average edge length, edge length variation,
turning angle range, and probability of changing
angle or length of the next segment.

If Elvis Were a Peanut

Number of Vertices: 1000
Average Length: 0.00951424
Log2(length): -6.7157
File Size: 9704 bits
Bits per Vertex: 9.704
Bits per Coordinate: 4.852
% Header: 1.40148
Entropy: 4.31051
Excess: 0.125621

Diving Miss Daisy

Number of Vertices: 1000
Average Length: 0.001
Log2(length): -9.96578
File Size: 6704 bits

Bits per Vertex: 6.704
Bits per Coordinate: 3.352
% Header: 2.02864
Entropy: 3.0424
Excess: 0.101762

Future Work

It would be interesting to add a few more dimensions
to our curve compression technique.  A possible use
of a 3 to 4 dimensional curve would be legal
signatures, such as those necessary to make a
credit card transaction at the point-of-sale.  The third
dimension can be time and can be used to check
whether the timing of the signature is consistent with
the writer’s other signatures.  In addition, a fourth
dimension, pressure, might be considered as a
means to further assess the validity of the signature.
Each of these dimensions can be compressed and
stored for later analysis.


